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Stability of repulsive Bose-Einstein condensates in a periodic potential
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The cubic nonlinear Schro¨dinger equation with repulsive nonlinearity and an elliptic function potential
models a quasi-one-dimensional repulsive dilute gas Bose–Einstein condensate trapped in a standing light
wave. New families of stationary solutions are presented. Some of these solutions have neither an analog in the
linear Schro¨dinger equation nor in the integrable nonlinear Schro¨dinger equation. Their stability is examined
using analytical and numerical methods. All trivial-phase stable solutions are deformations of the ground state
of the linear Schro¨dinger equation. Our results show that a large number of condensed atoms is sufficient to
form a stable, periodic condensate. Physically, this implies stability of states near the Thomas–Fermi limit.
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I. INTRODUCTION

Recent experiments on dilute–gas Bose–Einstein con
sates~BECs! have generated great interest in macrosco
quantum phenomena@1,2# in both the theoretical and exper
mental physics community. Such BECs are experiment
realized when certain gases are supercooled below a cr
temperature and trapped in electromagnetic fields@3#. Many
BEC experiments use harmonic confinement. Recently, h
ever, there has been much interest in sinusoidal confinem
of repulsive BECs using standing light waves. Such BE
have been used to study phase coherence@4–6# and matter-
wave diffraction@7#. They have also been predicted to app
to quantum logic @8,9#, matter-wave transport@10#, and
matter-wave gratings. In this paper, we consider the dyn
ics and stability of repulsive BECs trapped in standing lig
waves.

A mean–field description for the macroscopic BEC wa
function is constructed using the Hartree–Fock approxim
tion @11# and results in the Gross–Pitaevskii equati
@12,13#. The dimensions of the BEC play an important ro
1D, 2D, and 3D BECs all behave in a radically differe
manner @14,15#. In the quasi–1D regime, the Gross
Pitaevskii equation reduces to the one-dimensional~1D! non-
linear Schro¨dinger equation~NLS! with an external poten-
tial. This regime holds when the transverse dimensions of
condensate are on the order of its healing length and
longitudinal dimension is much longer than its transve
dimensions@16,17#. In this regime the BEC remains phas
coherent and the governing equations are one dimensio
This is in contrast to a truly 1D mean-field theory whic
requires transverse dimensions on the order of or less
the atomic interaction length.

The recent trapping of a BEC in a hollow blue-detun
laser beam@18# demonstrates that a quasi-1D BEC is e
perimentally realizable. A variety of other experimen
@1,18–23# are also modeled by the 1D NLS with an extern
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potential. Upon rescaling, the governing evolution is giv
by

ic t52 1
2 cxx1ucu2c1V~x!c, ~1!

wherec(x,t) is the macroscopic wave function of the co
densate andV(x) is an experimentally generated macr
scopic potential. Confinement in a standing light wave
sults inV(x) being periodic. In a recent experiment@4,5#, a
shallow harmonic potential was applied in addition to
standing light wave. The standing light wave in this case w
sufficiently intense so that the condensate was strongly lo
ized in each well. This is referred to as the tight-bindi
regime. Additionally, the apparatus was tilted vertically
that gravity caused tunneling between wells. Our theoret
findings consider the complimentary experiment in which
condensate is free to move between wells. With the adven
quasi-1D, cylindrical geometries@18#, additional harmonic
confinement is no longer necessary and the BEC dynam
considered here is applicable.

To model the quasi-1D confinement produced by a sta
ing light wave, we use the periodic potential

V~x!52V0sn2~x,k!, ~2!

where sn(x,k) denotes the Jacobian elliptic sine functio
@24# with elliptic modulus 0<k<1. In the limit k50 the
potential is sinusoidal and thusV(x) is a standing light wave.
For intermediate values~e.g., k,0.9) the potential closely
resembles the sinusoidal behavior and thus provides a g
approximation to a standing light wave. Finally, fo
k→12, V(x) becomes an array of well-separated hyperbo
secant potential barriers or wells. The potential is plotted
Fig. 1 for values ofk50,0.9,0.999, and 0.999 999. Only fo
k very near one~e.g., k.0.999) does the solution appea
visibly elliptic.

The freedom in choosingk allows us to consider much
more general potentials than considered previously@25–28#
and allows for great flexibility in considering a wide varie
of physically realizable potentials.
©2001 The American Physical Society12-1
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The paper is outlined as follows: in the next section
derive and consider various properties and limits of t
types of explicit solutions of Eq.~1! with ~2!. Section III
develops the analytic framework for the linear stability pro
erties of the new solutions of Sec. II. The stability results
confirmed by numerical computations. In certain cases,
stability analysis is intractable and we rely solely on simu
tions to determine stability. We conclude the paper in S
IV with a brief summary and highlights of the primary re
sults of the paper and their consequences for BEC dynam
and confinement.

II. STATIONARY SOLUTIONS

Equation~1! with V(x)50 is an integrable equation an
many explicit solutions corresponding to various bound
conditions are known. A comprehensive overview of the
solutions is found in Ref.@29#. If V(x)Þ0, the NLS is usu-
ally not integrable. In this case, only small classes of expl
solutions can most likely be obtained. Our choice of pot
tial ~2! is motivated by the form of the stationary solution
the NLS withV(x)50. An overview of these stationary so
lutions and their properties is found in Ref.@16#. At present,
we restrict our attention to stationary solutions of Eq.~1!,
i.e., solutions whose time dependence is restricted to

c~x,t !5r ~x! exp~2 ivt1 iu~x!!. ~3!

If ux[0, then the solution is referred to as having triv
phase and we chooseu(x)50. Substituting the ansatz Eq
~3! in Eq. ~1! and dividing out the exponential factor resu
in two equations: one from the real part and one from
imaginary part. The second equation can be integrated:

u~x!5cE
0

x dx8

r 2~x8!
, ~4!

FIG. 1. The sn2(x,k) structure of the potential for varying val
ues ofk. Note that thex coordinate has been scaled by the period
the elliptic function. This period approaches infinity ask→1. Since
sn(x,k) is periodic in x with period 4K(k)
54*0

p/2da/A12k2sin2a, V(x) is periodic inx with period 2K(k).
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where c is a constant of integration. Note thatu(x) is a
monotonous function ofx. Substitution of this result in the
remaining equation gives

vr 4~x!5
c2

2
2

r 3~x!r 9~x!

2
1r 6~x!2V0sn2~x,k!r 4~x!.

~5!

The following sections describe two classes of solutions
this equation.

Type A

For these solutions,r 2(x) is a quadratic function of
sn(x,k):

r 2~x!5A sn2~x,k!1B. ~6!

Substituting this ansatz in Eq.~5! and equating the coeffi
cients of equal powers of sn(x,k) results in relations among
the solution parametersv,c,A, andB and the equation pa
rametersV0 andk. These are

v5
1

2 S 11k213B2
BV0

V01k2D , ~7a!

c25BS 11
B

V01k2D ~V01k21Bk2!, ~7b!

A5V01k2. ~7c!

For a given potentialV(x), this solution class has one fre
parameterB which plays the role of a constant backgrou
level. The freedom in choosing the potential gives a total
three free parameters:V0 , k, andB.

The requirements that bothr 2(x) andc2 are positive im-
poses conditions on the domain of these parameters:

V0>2k2, B>0, ~8a!

or

V0<2k2, 2~V01k2!<B<2S 11
V0

k2 D . ~8b!

The region of validity of these solutions is displayed in F
2.

For typical values ofV0 ,k, and B, the above equations
give rise to solutions of Eq.~1! which are not periodic inx:
r (x) is periodic with period 2K(k), whereas exp(iu(x)) is
periodic with periodT5u21(2p). In general these two pe
riods 2K(k) and T are not commensurable. Thus, requirin
periodic solutions results in another condition, name
2K(k)/T5p/q, for two positive integersp andq. The most
convenient way to express this phase quantization condi
is to assume the potential~i.e., V0 and k) is given, and to
consider values ofB for which the quantization condition is
satisfied. Introducingb5B/(V01k2), we find

f

2-2
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6
Ab~11b!~11k2b!

p E
0

K(k) dx

sn2~x,k!1b
5

p

q
. ~9!

This equation is solved forb, after whichB5b(V01k2).
For numerical simulations, the number of periods of the
tential is set. This determinesq, limiting the number of so-
lutions of Eq.~9!. Solutions with the same periodicity as th
potential requirep/q51.

Note that solutions of type A reduce to stationary so
tions of Eqs.~1! and ~2! with V050. Furthermore, all sta
tionary solutions of the integrable equation are obtained
limits of solutions of type A.

By equatingc50, solutions with trivial phase are ob
tained and the above formulas simplify greatly. Sincec2 has
three factors which are linear inB @see Eq.~7!#, there are
three choices ofB for which this occurs:B50, B52(V0
1k2), and B52(V01k2)/k2. These possibilities are thre
of the four boundary lines of the region of validity in Fig.
Note that the remaining boundary line (V052k2) corre-
sponds tor 2(x)5B, which gives rise to a plane wave solu
tion. Using Jacobian elliptic function identities@24#, one
finds various simplified solution forms:B50 gives

r ~x!5AV01k2sn~x,k!, v5
11k2

2
. ~10!

B52(V01k2) gives

r ~x!5A2~V01k2!cn~x,k!, v5 1
2 2V02k2, ~11!

where cn(x,k) denotes the Jacobian elliptic cosine functio
Lastly, B52(V01k2)/k2 gives

r ~x!5
A2~V01k2!

k
dn~x,k!, v5212

V0

k2
1

k2

2
,

~12!

where dn(x,k) denotes the third Jacobian elliptic functio
Solution ~10! is valid for V0>2k2, whereas the other two
solutions~11! and ~12! are valid forV0<2k2. The ampli-
tude of these solutions as a function of potential strengthV0
is shown in Fig. 3.

Both cn(x,k) and sn(x,k) have zero average as function
of x and lie in@21,1#. On the other hand, dn(x,k) has non-
zero average. Its range is@A12k2,1#. Furthermore, cn(x,k)

FIG. 2. The region of validity of the solutions of type A i
displayed shaded for a fixed value ofk. The edges of these region
correspond to various trivial phase solutions.
03661
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and sn(x,k) are periodic inx with period 4K(k), whereas
dn(x,k) is periodic with period 2K(k). These properties
matter greatly for the stability analysis, as will be se
in Sec. III. Some solutions with trivial phase are shown
Fig. 4.

Another interesting limit occurs whenk50, resulting in
trigonometric solutions. These solutions are illustrated
Fig. 5. Whenk51, solutions are expressed in terms of h
perbolic functions. In this case the potential reduces t
single well or peak and the solution is a solitary wave. F
values of k close to 1, the potential is a train of wel
separated wells or peaks, and the solutions are trains of
tary waves with exponentially small interactions. The so
tary wave limit is illustrated in Fig. 6.

Type B

For these solutions,r 2(x) is linear in cn(x,k) or dn(x,k).
First we discuss the solution with cn(x,k). The quantities
associated with this solution will be denoted with a subind
1. The quantities associated with the dn(x,k) solution re-
ceive a subindex 2.

Substituting

r 1
2~x!5a1cn~x,k!1b1 , ~13!

in Eq. ~5! and equating different powers of cn(x,k) gives the
relations:

FIG. 3. The amplitude of the trivial phase solutions of type
versus the potential strengthV0 .

FIG. 4. Trivial phase solutions fork50.5. V(x) is indicated
with a solid line. For the top figureV051. For the bottom figure
V0521.
2-3
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V052
3

8
k2, ~14a!

v15
1

8
~11k2!1

6a1
2

k2
, ~14b!

c1
25

a1
2

4k6
~16a1

22k4!~16a1
21k22k4!, ~14c!

b15
4a1

2

k2
. ~14d!

The class of potentials Eq.~2! is restricted by the first of
these relations so thatV0 is in the narrow range23k2/8
<V0<0. The solution class now depends on one free am
tude parametera1 and the free equation parameterk.

The region of validity of this solution is, as before, dete
mined by the requirementsc1

2>0 andr 1
2(x)>0:

ua1u>
k2

4
. ~15!

The period ofr 1(x) is twice the period of the potential. Re
quiring periodicity inx of this first solution of type B gives

6
A~b1

22k2!~b1
2112k2!

4p E
0

2K(k) dx

4b11k cn~x,k!
5

p

q
.

~16!

For givenk and integersp, q, this equation is solved forb1,
from which a15b1k/4.

The dn(x,k) solutions are found by substituting

FIG. 5. Phase and amplitude of the trigonometric solutions.
all these figures, the solid line denotesV(x)52V0sin2(x), the
dashed line isr (x) and the dotted line isu(x)/(2p). Here r 2(x)
5V0sin2(x)1B and tan(u(x))56A11V0 /B tan(x). Note that
u(x) becomes piecewise constant, asB approaches the boundary o
the region of validity. Far away from this boundary,u(x) is essen-
tially linear. Note that no phase quantization is required in this ca
03661
li-

r 2
2~x!5a2dn~x,k!1b2 , ~17!

in Eq. ~5!. Equating different powers of dn(x,k) imposes the
following constraints on the parameters:

V052 3
8 k2, ~18a!

v25 1
8 ~11k2!16a2

2 , ~18b!

c2
25

a2
2

4
~16a2

221!~16a2
21k221!, ~18c!

b254a2
2 . ~18d!

The class of potentials~2! is restricted as for the previou
solution by the first of these relations. The solution cla
again depends on one free amplitude parametera2 and the
free equation parameterk.

The region of validity of this solution is once more dete
mined by the requirementsc2

2>0 andr 2
2(x)>0:

ua2u> 1
4 or 0<a2<

A12k2

4
. ~19!

The period ofr 2(x) is equal to the period of the potentia
Requiring periodicity inx of this second solution of type B
gives

6
A~16a2

221!~16a2
21k221!

p E
0

K(k) dx

4a21dn~x,k!
5

p

q
.

~20!

For given k and integersp, q, this equation needs to b
solved to determinea2.

In contrast to solutions of type A, solutions of type B d
not have a nontrivial trigonometric limit. In fact, for solu

FIG. 6. Solutions withk51 ~a!, ~b!, ~c! or k→1 ~d!. The solid
line denotesV(x)52V0tanh2(x), the dashed line isr (x) and the
dotted line isu(x)/2p. For ~a! and ~b!, r 2(x)5(V011)tanh2(x)
1B and u(x)5AB/(V011)x1arctan(A(V011)/B tanh(x)). For
~c!, r (x)5A2(V011)sech(x) and u(x)50. In ~d!, a value ofk
51 –10216 was used.

r

e.
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tions of type B, this limit is identical to the limit in which the
potential strengthV0523k2/8 approaches zero. Thus it
clear that the solutions of type B have no analogue in
integrable nonlinear Schro¨dinger equation. However, othe
interesting limits do exist: solitary wave solutions are fou
for k51. They are illustrated in Fig. 7.

Trivial phase solutions corresponds toc50. This occurs
precisely at the boundaries of the regions of validity. For
first solution of type B, there are two possibilities:a1
5k2/4 or a152k2/4. By replacingx by x12K(k), one sees
that these two possibilities are completely equivalent, so o
the first one needs to be considered:

r 1
2~x!5

k2

4
„11cn~x,k!…, v15

1

8
1

k2

2
. ~21!

For the second solution, there are four possibilities:a2

51/4, a2521/4, a250, anda25A12k2/4. The third one
of these results in a zero solution. The others give interes
trivial phase solutions. Fora251/4,

r 2
2~x!5 1

4 „11dn~x,k!…, v25
1

2
1

k2

8
. ~22!

The casea2521/4 gives

r 2
2~x!5 1

4 „12dn~x,k!…, v25
1

2
1

k2

8
. ~23!

Finally, for a25A12k2/4,

r 2
2~x!5

A12k2

4
„dn~x,k!1A12k2

…, v25
12k2

2
. ~24!

These solutions are shown in Fig. 8.

III. STABILITY

We have found a large number of new solutions to
governing Eqs.~1! and~2!. However, only solutions that ar
stable can be observed in experiments. In this section,
consider the stability of the different solutions. Both analy

FIG. 7. Amplitude and phase of solitary wave solutions of ty
B. The potentialV(x)53 tanh(x)2/8 is indicated with a solid line.
Here r 2(x)54a21a sech(x) and u(x)56xA16a221/2
7arctan(A(4a21)/(4a11)tanh(x/2)). The dashed line solution
corresponds toa50.3, the dotted line toa520.3.
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trivial phase. In contrast, only numerical results are presen
for the nontrivial phase cases.

We first consider the linear stability of the solution~3!. To
do so, consider perturbations of the exact solutions of
form

c~x,t !5„r ~x!1ef~x,t !…exp@ i „u~x!2vt…#, ~25!

wheree!1 is a small parameter. Collecting terms atO(e)
gives the linearized equation. In terms of the real and ima
nary parts U5(U1 ,U2) t5(Re@f#,Im@f#) t the linearized
evolution is given by

Ut5JL U5JS L1 2S

S L2
DU, ~26!

where

L152
1

2 S ]x
22

c2

r 4~x!
D 13r 2~x!1V~x!2v, ~27a!

L252
1

2 S ]x
22

c2

r 4~x!
D 1r 2~x!1V~x!2v, ~27b!

S5
2c

r ~x!
]x

1

r ~x!
, ~27c!

andJ5(21 0
0 1) is a skew-symmetric matrix. The operatorsL,

L1 , andL2 are Hermitian whileS is anti-Hermitian. Con-
sidering solutions of the formU(x,t)5Û(x)exp(lt) gives the
eigenvalue problem

LÛ5lÛ, ~28!

FIG. 8. Solutions of type B with trivial phase. The figures co
respond to, from top to bottom,k50.5, k50.9, andk50.999. The
potential is indicated with a solid line. The other curves are~1!
ur 1(x)u with a25k2/4, ~2! r 2(x) with a251/4, ~3! ur 2(x)u with a2

521/4, and~4! r 2(x) with a25A12k2/4.
2-5
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whereL5JL andl is complex. If alll are imaginary, then
linear stability is established. In contrast, if there is at le
one eigenvalue with a positive real part, then instability
sults. Using the phase invariancec°eigc of Eq. ~1!, Noet-
her’s theorem@30# gives

LS 0

r ~x!
D 50, ~29!

which implies thatL2r (x)50. Thusl50 is in the spectrum
of L2 . For general solutions of the form~3!, determining the
spectrum of the associated linearized eigenvalue prob
~26! is beyond the scope of current methods. However, so
cases of trivial phase solutions (c50) are amenable to
analysis.

The Hermitian operatorsL6 are periodic Schro¨dinger op-
erators and thus the spectra of these operators is real
consists of bands of continuous spectrum contained
@l6 ,`) @30#. Herel6 denote the ground state eigenvalu
of L6 , respectively. They are given by

l65 infifi51^fuL6uf&, ~30!

whereifi25^fuf&. From the relationL15L212r 2(x) it
follows that l1.l2 . Also l2<0 sincel50 is an eigen-
value ofL2 .

If l1.0, thenL1 is positive, so we can define the pos
tive square root,L1

1/2, via the spectral theorem@30#, and
hence the Hermitian operatorH5L1

1/2L2L1
1/2 can be con-

structed. The eigenvalue problem forL in Eq. ~28! is then
equivalent to

~H1l2!w50, ~31!

with w5L1
1/2Û1. Denote the left-most point of the spectru

of H by m0. If m0>0 thenl2,0 and the eigenvalues ofL
are imaginary and linear stability results. SinceH
5L1

1/2L2L1
1/2 andL1

1/2 is positive,m0>0 if and only if L2 is
non-negative. In contrast, ifm0,0 thenl2.0 andL has at
least one pair of real eigenvalues with opposite sign. T
shows the existence of a growing mode leading to instab
of the solution.

Three distinct cases are possible for linear stability.

~i! If r (x).0 thenr (x) is the ground state ofL2 @30#, and
Eq. ~29! impliesl250 and hencel1.0. Thus the solution
~3! is linearly stable.
~ii ! If r (x) has a zero, it is no longer the ground state@30#
and l2,0. Thus there exists ac0 such that^c0uL2uc0&
,0. If in addition l1.0, then we can constructf
5L1

2(1/2)c0 /iL1
2(1/2)c0i which gives ^fuHuf&,0. Hence

m0,0 andL has positive, real eigenvalues so that the so
tion ~3! is linearly unstable.
~iii ! For l2 andl1 both negative the situation is indefinit
and our methods are insufficient to determine linear stab
or instability.

In what follows, these results are applied to the types A a
B trivial phase solutions constructed in the preceding sect
Specifically, we construct the operatorsL2 andL1 for each
solution, which allows us to use one of the above crite
03661
t
-

m
e

nd
in

is
y

-

y

d
n.

.

The analytical results are accompanied by direct comp
tions on the nonlinear governing Eqs.~1! and ~2!. For all
computational simulations, 12 spatial periods are used. H
ever, to better illustrate the dynamics, typically four spat
periods are plotted. Moreover, all computations are p
formed with white noise included in the initial data.

A. Trivial phase: Type A

1. cn„x,k…

For the cn(x,k) solution theL6 operators are

L152 1
2 ]x

22~2V013k2!cn2~x,k!1k22 1
2 , ~32a!

L252 1
2 ]x

22k2cn2~x,k!1k22 1
2 , ~32b!

with V0,2k2. Note thatL2 , which is independent ofV0, is
the classical 1-gap Lame´ operator@29#. The spectrum ofL2

can be calculated explicitly. The ground state eigenvalu
l25(k221)/2 with associated eigenfunction dn(x,k). The
elliptic functions cn(x,k) and sn(x,k) are also eigenfunc-
tions of L2 . They are the first and second excited state a
have eigenvalue 0 andk2/2, respectively. These are the on
eigenvalues and the spectrum consists of the bands@(k2

21)/2,0#ø@k2/2,̀ ). The spectrum is illustrated in Fig. 9.
Since dn(x,k).0 andl25(k221)/2,0 the arguments

of the preceding section imply that the cn(x,k) wave is un-
stable whenever the operatorL1.0. It is clear from Eq.
~32a! that L1 is positive if V0,2(k211/4) andk2.1/2.
Thus, the cn(x,k) wave is unstable for parameter values
this region. Moreover, this region can be enlarged toV0,
2(k211)/2 andk2.1/2 by observing that the ground sta
eigenvalue of an operatorL01gL1 is a convex function ofg :
l5L~g!. This follows from the fact that the ground sta
eigenvalue is the minimizer of the Rayleigh quotient. L
aP@0,1#, then

L~ag11~12a!g2!

5 infifi51^fua~L01g1L1!1~12a!~L01g2L1!uf&

>a infifi51^fuL01g1L1uf&

1~12a!infifi51^fuL01g2L1uf&

5aL~g1!1~12a!L~g2!. ~33!

Now consider the ground state eigenvaluel15L1(V0) and
note thatL1(2k2)5(k221)/2 andL1(23k2/2)5k221/2.
The line through these two points is given byL1(V0)

FIG. 9. The spectrum ofL2 for the type A cn(x,k) trivial phase
solution.
2-6
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52V02(11k2)/2, so by convexity L1(V0)>2V02(1
1k2)/2 for V0P@23k2/2,2k2#. Thus, l15L(V0)>0 if
V0<2(11k2)/2.

If k2,1/2, less is known. However the results of Wei
stein and Keller@31# show that the ground state eigenval
grows as l1'(2(12k2)uV0u)1/21k221/2 for 2V0@1.
Hence fork2<1/2 instability occurs for sufficiently negativ
V0.

The most unstable modes of the cn(x,k) solution can be
determined perturbatively when«522(V01k2)!1. This
corresponds to a solution with small amplitude. SinceL1

5L21« cn2(x,k), it follows thatL1 is not necessarily posi
tive, disallowing the construction ofH in Eq. ~31!. However,
from Eq. ~28!, L1L2Û252l2Û2, which offers an alterna-
tive to Eq.~31! to calculate the spectrum of Eq.~28!. Let l

5 in1«l1 and Û25fn1«f1, wheren is an eigenvalue of
L2 andfn is its associated normalized eigenfunction. The
first order calculation using time-independent perturbat
theory gives

l252n22«n^fnucn2~x,k!ufn&. ~34!

Thus, l2.0 only if 2«^fnucn2(x,k)ufn&,n,0. Hence,
only modesfn with n in this band near zero are unstab
For these unstable modes, the eigenfunctionfn is approxi-
mately the zero mode cn(x,k). Thus the onset of instability
in the Fourier domain occurs near the wave numbers of
cn(x,k) solution. This is characteristic of a modulational i
stability.

To illustrate this instability, we display in Fig. 10 th
evolution of a cn(x,k) solution over the time intervalt
P@0,40# for V0521.0 and k50.5. The solution goes
quickly unstable with the instability generated near the fi
wave number. This agrees with the analytical prediction. I
illustrated in the evolution of the wave number spectrum
Fig. 11. Here a close-up of the spectrum near wave num
one is shown. This shows that the instability indeed occur
a neighborhood of the dominant wave number of the stat
ary solution.

FIG. 10. Unstable evolution of a type A cn(x,k) solution given
by Eq. ~11! over 40 time units withk50.5 andV0521.0.
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2. sn„x,k…

For the sn(x,k) solutions theL6 operators are given by

L152
1

2
]xx1~3k212V0!sn2~x,k!2

11k2

2
, ~35a!

L252
1

2
]xx1k2sn2~x,k!2

11k2

2
. ~35b!

Again L2 is a 1-gap Lame´ operator, differing fromL2 for
the cn(x,k) solution only by a constant. The spectrum
given by @2k2/2,21/2#ø@0,̀ ). It again follows from the
work of Weinstein and Keller@31# that for sufficiently large
values ofV0 the ground state eigenvalue ofL1 is approxi-
mately given by

l1'~2V0!1/22
11k2

2
~36!

and thusL1 is positive definite for sufficiently largeV0.
This, in turn, implies instability of the sn(x,k) solution for
sufficiently largeV0, which corresponds to large amplitud
solutions. The sn(x,k) solution goes quickly unstable in
similar fashion to the cn(x,k) solution ~see Fig. 10!.

3. dn„x,k…

From the previously established results, linear stability
the dn(x,k) solutions follows immediately sincer (x).0,
because dn(x,k) has no zeros. Thus in contrast to th
cn(x,k) and sn(x,k) solutions, the dn(x,k) solutions given
by Eq. ~12! are linearly stable. Figure 12 displays the evo
tion of a dn(x,k) solution over the time intervaltP@0,80#
for V0521.0 andk50.5. Although noise was added to th
initial data, the solution shape persists and the solution
stable, as predicted analytically. For this case, the wave n
ber spectrum is supported primarily by three modes: the z
mode which determines the offset, and two other mo
which determine the oscillation frequency of the dn(x,k) so-
lution. Even with large perturbations, this solution persis

FIG. 11. Wave number spectrum evolution of a type A cn(x,k)
solution given by Eq.~11! over 100 time units withk50.5 and
V0520.55. The modal evolution shows the band of unsta
modes which result from starting with the unstable cn(x,k) solu-
tion. This shows that the instability occurs in a neighborhood of
dominant wave number of the stationary solution.
2-7
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This indicates that the offset of a solution is important for
stability. This observation is reconfirmed for other stable
lutions below.

B. Trivial phase: Type B

1. cn„x,k…

The type B trivial phase solution is obtained f
a156k2/4 and corresponding amplitude ur (x)u
5(k/2)A11cn(x,k). The solutionr (x) is not strictly posi-
tive. The operatorL1 is

L152
1

2
]x

21
k2

4
2

1

8
1

3

8
k2sn2~x,k!13a1cn~x,k!. ~37!

Thus we find that the situation is indeterminate.
Numerical simulations for the type B cn(x,k) solutions

given by Eq.~21! are illustrated in Fig. 13. This figure dis
plays the evolution of the cn(x,k) branch of solution fork
50.5 ~top panel! andk50.999~bottom panel! over the time
interval tP@0,800# and tP@0,400#, respectively, forV0
523k2/8. For bothk50.5 andk50.999 the solutions are
unstable, but this instability manifests itself only after seve
hundred time units. Figure 14 shows the evolution of
wave number spectrum for both these cases. Fork50.5, the
onset of instability occurs near wave number one as is
case of type A solutions. After 800 time units, the wa
numbers have only just begun to spread, causing the solu
to destabilize. Fork50.999, the solution is composed of
much larger number of wave numbers which destabi
much more quickly than thek50.5 case. Here the instabilit
is generated near wave number one and its harmonics.

2. dn„x,k…

The trivial phase dn(x,k) solution requiresc50 which is
achieved fora2561/4, a250, ora25A12k2/4. Thus three
distinct parameter regimes need to be considered. The
evant operators in this case are

L152
1

2
]x

22
k211

8
16a2

21
3k2

8
sn2~x,k!13a2dn~x,k!,

~38a!

FIG. 12. Stable evolution of the type A dn(x,k) solutions given
by Eq. ~12! over 80 time units withk50.5 andV0521.0.
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L252
1

2
]x

22
k211

8
22a2

21
3k2

8
sn2~x,k!1a2dn~x,k!.

~38b!

The casea251/4 gives L2r (x)50 with r (x).0. Hence
from the linear stability criteria, these waves are stable for
values ofk. As with thea251/4 case, the regime wherea2

5A12k2/4 gives a solutionr (x) which is strictly positive
and is the ground state ofL2 . Thus stability follows for all
values of k. The last parameter regime, for whicha2

FIG. 13. Unstable evolution of the type B cn(x,k) solutions
given by Eq. ~21! for k50.5 ~top panel! and k50.999 ~bottom
panel! for a15k2/4 andV0523k3/8.

FIG. 14. Wave number spectrum evolution of a type B cn(x,k)
solution given by Eq.~11! for a15k2/4 and corresponding tok
50.5 ~left panel! andk50.999~right panel! of Fig 13. The evolu-
tion shows that the unstable band of modes is generated near
number one and fork50.999 near wave number one and its ha
monics.
2-8
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521/4, is indeterminate since bothl2 andl1 are negative
and our linear stability analysis is inconclusive.

These analytic predictions are confirmed in Figs. 15 a
16. In Fig. 15 the evolution of a dn(x,k) solution is shown
for a251/4 andk50.999. As predicted analytically, this pa
rameter regime is stable for allk values. This simulation
once again illustrates the importance of an offset for sta
lizing the condensate. In contrast to this stable evo

FIG. 15. Stable evolution of a type B dn(x,k) solution given by
Eq. ~22! for k50.999 anda251/4.

FIG. 16. Unstable evolution of a type B dn(x,k) solution given
by Eq. ~23! for k50.5 ~top panel! and k50.999 ~bottom panel!
given a2521/4. In this case, there is no offset to stabilize t
condensate.
03661
d

i-
-

tion, the casea2521/4 is unstable as illustrated in Fig. 16
The linear stability results in this case are indetermina
However, the numerical simulations conclusively show t
evolution to be unstable for allk values. For this case, th
offset of the solution is insufficient to stabilize the conde
sate. We note that for small values ofk, the onset of insta-
bility occurs after a very long time. Higher values ofk result
in instabilities on a much faster time scale. Finally, we co
sider the parameter regime for whicha25A12k2/4. In this
case, the analytic predictions once again suggest stability
all k values. We do not illustrate this case since it is quali
tively very similar to Fig. 16. However, in contrast to th
a251/4 case, for values ofk close to one, there is a negl
gible amount of offset, distinguishing this stable case fro
previous ones. For these values ofk, the solution has a smal
amplitude compared to the potential so that the behavio
essentially linear and stability is achieved because the c
densate is trapped in the wells of the potential, as in ordin
quantum mechanics.

C. Nontrivial phase

As stated at the beginning of Sec. III, determining t
linear stability for nontrivial phase solutions is not amena

FIG. 17. Evolution of a nontrivial phase type A solution wit
V051.0 andB51 ~top panel! and B51/2 ~bottom panel!. For B
sufficiently large, the offset provided is able to stabilize the cond
sate whereas forB below a critical threshold the condensate des
bilizes as shown forB51/2.
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to analysis. This leads us to consider the stability of n
trivial phase solutions using numerical computations.

To begin, consider the trigonometric limit of the no
trivial phase solutions of type A. These solutions are sho
in Fig. 5. Figure 17 depicts the evolution of a pair of initi
conditions withV051.0 and for whichB51 ~top panel! and
B51/2 ~bottom panel!. SinceB determines the offset of th
condensate, these numerical results show directly the im
tance of this offset for stability. In contrast, if the offset is to
small, it is unable to stabilize the condensate.

For type B solutions, qualitatively nothing changes fro
the dynamics illustrated for the trivial phase case. In parti
lar, numerical simulations can be performed using exact
lutions which are constructed subject to the phase quan
tion condition given by either Eq.~16! or ~20!. A numerical
shooting method is used to find appropriate values ofa2 for
which a phase–quantized, periodic solution exists. Once
is achieved, numerical simulations can easily be perform
Note that any integer valuep is allowed as input for the
phase quantization conditions, provided solutions exist
the parameter values. It turns out this imposes a lower bo
on the value ofp. In the simulations, the actual value ofp
does not affect the stability of the solution. Increasing
phase–quantization integerp leads to a solution with a
steeper phase profile, suggesting a more unstable situa
However, this phase effect is balanced by an increased o
a2 of the amplitude. Qualitatively, the dynamics are as
picted in Figs. 15 and 16. Thus the nontrivial phase soluti
of type B are stable fora2.1/4 and for 0,a2,A12k2/4,
whereas the nontrivial phase solution is unstable fora2,
21/4.

IV. SUMMARY AND CONCLUSIONS

We considered the repulsive nonlinear Schro¨dinger equa-
tion with an elliptic function potential as a model for
co

v.

sc
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trapped, quasi-one-dimensional Bose–Einstein conden
Two new families of periodic solutions of this equation we
found and their stability was investigated both analytica
and numerically. Using analytical results for trivial pha
solutions, we showed that solutions with sufficient offset a
linearly stable. Moreover, all such stable solutions are de
mations of the ground state of the linear Schro¨dinger equa-
tion. This is confirmed with extensive numerical simulatio
on the governing nonlinear equation. Likewise, nontriv
phase solutions are stable if their density is sufficiently o
set. Since we are modeling a Bose–Einstein conden
trapped in a standing light wave, our results imply tha
large number of condensed atoms is sufficient to form
stable, periodic condensate. Physically, this implies stab
of states near the Thomas–Fermi limit.

To quantify this phenomena, we consider thek50 limit
and note that in the trigonometric limitk→0 the number of
particles per welln is given by n5(*0

puc(x,t)u2dx)/p
5V0/21B. In the context of the BEC, and for a fixed atom
coupling strength, this means a large number of conden
atoms per welln is sufficient to provide an offset on th
order of the potential strength. This ensures stabilization
the condensate. Alternatively, a condensate with a la
enough number of atoms can be interpreted as a develo
condensate for which the nonlinearity acts as a stabiliz
mechanism.
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