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Stability of repulsive Bose-Einstein condensates in a periodic potential
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The cubic nonlinear Schdinger equation with repulsive nonlinearity and an elliptic function potential
models a quasi-one-dimensional repulsive dilute gas Bose—Einstein condensate trapped in a standing light
wave. New families of stationary solutions are presented. Some of these solutions have neither an analog in the
linear Schrdinger equation nor in the integrable nonlinear Sdiiger equation. Their stability is examined
using analytical and numerical methods. All trivial-phase stable solutions are deformations of the ground state
of the linear Schrdinger equation. Our results show that a large number of condensed atoms is sufficient to
form a stable, periodic condensate. Physically, this implies stability of states near the Thomas—Fermi limit.
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[. INTRODUCTION potential. Upon rescaling, the governing evolution is given
by
Recent experiments on dilute—gas Bose—Einstein conden- . ) )
sates(BEC9 have generated great interest in macroscopic == 20t [P+ V(O &, (1)

guantum phenomend,?2] in both the theoretical and experi-
mental physics community. Such BECs are experimentallyvhere #(x,t) is the macroscopic wave function of the con-
realized when certain gases are supercooled below a criticdensate and/(x) is an experimentally generated macro-
temperature and trapped in electromagnetic figldsMany scopic potential. Confinement in a standing light wave re-
BEC experiments use harmonic confinement. Recently, howsults inV(x) being periodic. In a recent experime#t5], a
ever, there has been much interest in sinusoidal confinemeghallow harmonic potential was applied in addition to a
of repulsive BECs using standing light waves. Such BECsstanding light wave. The standing light wave in this case was
have been used to study phase coher¢de®] and matter-  sufficiently intense so that the condensate was strongly local-
wave diffraction[7]. They have also been predicted to applyized in each well. This is referred to as the tight-binding
to quantum logic[8,9], matter-wave transporf10], and regime. Additionally, the apparatus was tilted vertically so
matter-wave gratings. In this paper, we consider the dynarihat gravity caused tunneling between wells. Our theoretical
ics and stability of repulsive BECs trapped in standing lightfindings consider the complimentary experiment in which the
waves. condensate is free to move between wells. With the advent of
A mean-field description for the macroscopic BEC wavequasi-1D, cylindrical geometriegl8], additional harmonic
function is constructed using the Hartree—Fock approximaconfinement is no longer necessary and the BEC dynamics
tion [11] and results in the Gross—Pitaevskii equationconsidered here is applicable.
[12,13. The dimensions of the BEC play an important role: ~ To model the quasi-1D confinement produced by a stand-
1D, 2D, and 3D BECs all behave in a radically differenting light wave, we use the periodic potential
manner [14,15. In the quasi—-1D regime, the Gross—
Pitaevskii equation reduces to the one-dimensi¢h) non- V(X)= = Vosrf(x,k), i)
linear Schrdinger equation(NLS) with an external poten-
tial. This regime holds when the transverse dimensions of thehere sng,k) denotes the Jacobian elliptic sine function
condensate are on the order of its healing length and thi24] with elliptic modulus Gsk<1. In the limit k=0 the
longitudinal dimension is much longer than its transversepotential is sinusoidal and thd§x) is a standing light wave.
dimensiong 16,17]. In this regime the BEC remains phase For intermediate value&.g.,k<<0.9) the potential closely
coherent and the governing equations are one dimensionaksembles the sinusoidal behavior and thus provides a good
This is in contrast to a truly 1D mean-field theory which approximation to a standing light wave. Finally, for
requires transverse dimensions on the order of or less thdn—1", V(x) becomes an array of well-separated hyperbolic
the atomic interaction length. secant potential barriers or wells. The potential is plotted in
The recent trapping of a BEC in a hollow blue-detunedFig. 1 for values ok=0,0.9,0.999, and 0.999 999. Only for
laser beam 18] demonstrates that a quasi-1D BEC is ex-k very near onele.g., k>0.999) does the solution appear
perimentally realizable. A variety of other experimentsvisibly elliptic.
[1,18-23 are also modeled by the 1D NLS with an external The freedom in choosing allows us to consider much
more general potentials than considered previo{25-29
and allows for great flexibility in considering a wide variety
* Author to whom correspondence should be addressed. of physically realizable potentials.
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k=1 where c is a constant of integration. Note tha{x) is a
monotonous function ok. Substitution of this result in the

10—
/AN
I remaining equation gives
P
08 ! II ',-’I 2 3
(1 cc rr(x)r"(x)
= o wr“(x)z;—THG(X)—VOsr\Z(x,k)r“(x).
x «
~— Iy
Ng 06 r I (5)
Ii g . . . .
o |'; “ The following sections describe two classes of solutions of
% 0.4 11/ h this equation.
s |
0.2 i Ly Type A
,';';" i/ \ For these solutionsr?(x) is a quadratic function of
00 I Wi/ —— k=0.999999 \ sn(x,k):
2
0 & r2(x)=A srf(x,k) + B. (6)

Substituting this ansatz in Eq5) and equating the coeffi-

FIG. 1. The sA(x,k) structure of the potential for varying val- > . .
ues ofk. Note that thex coordinate has been scaled by the period ofClents of_equal powers of snfk) results in relations _among
the elliptic function. This period approaches infinitykas 1. Since  the solution parameters,c,A, andB and the equation pa-
snx,k) is periodic in x with period 4(k) rametersvy andk. These are

=4[7"”dal \J1—K?sirPa, V(x) is periodic inx with period XK (k).

The paper is outlined as follows: in the next section we
derive and consider various properties and limits of two
types of explicit solutions of Eq(l) with (2). Section Il
develops the analytic framework for the linear stability prop-
erties of the new solutions of Sec. Il. The stability results are
confirmed by numerical computations. In certain cases, the
stability analysis is intractable and we rely solely on simula- A=Vy+K2,

tions to determine stability. We conclude the paper in Sec.
IV with a brief summary and highlights of the primary re- For 3 given potentiaV/(x), this solution class has one free

sults of the paper and their consequences for BEC dynamiGsarameteiB which plays the role of a constant background
level. The freedom in choosing the potential gives a total of

BV
1+k2+3B— — 2|, (7a)
Vo+k?

©=3

1+ B (Vo+k2+BKk?) (7b)
Vo+ k2 '

(70

and confinement.
three free parameter¥y, k, andB.
Il. STATIONARY SOLUTIONS The requirements that bottf(x) andc? are positive im-
Equation(1) with V(x)=0 is an integrable equation and poses conditions on the domain of these parameters:
Vo=—k?, B=0, (8a)

many explicit solutions corresponding to various boundary
conditions are known. A comprehensive overview of these
solutions is found in Ref.29]. If V(x)# 0, the NLS is usu-
ally not integrable. In this case, only small classes of explicit
solutions can most likely be obtained. Our choice of poten-
tial (2) is motivated by the form of the stationary solution of Vos—Kk2, —(Vo+kd)<B=<-—
the NLS withV(x)=0. An overview of these stationary so-
lutions and their properties is found in REL6]. At present,
we restrict our attention to stationary solutions of Et),  The region of validity of these solutions is displayed in Fig.
i.e., solutions whose time dependence is restricted to 2.
For typical values ofVy,k, and B, the above equations
(3 give rise to solutions of Eq1) which are not periodic irx:
If 6,=0, then the solution is referrgd _to as having trivial E)Eaxr?o:jsicpv?/irtlgd;;z r}’g‘(;:‘.f;ﬂ?zjzi)(.k?ﬁ ggs;;stﬁgfg( txv)v)olf)e—
phase and we chqogﬁ{x)zo. Substituting .the ansatz Eq. qqq 2K(k) andT are not commensurable. Thus, requiring
(3) in Eq. (1) and dividing out the exponential factor results eriodic solutions results in another condition, namely
@n two equations: one from the rejal part and_ one from th K(K)/T=plq, for two positive integerp andg. Thé most
imaginary part. The second equation can be integrated: convenient way to express this phase quantization condition
is to assume the potentigle., Vy andk) is given, and to
consider values oB for which the quantization condition is

x dx’
o0=c| (4 consi . quantiz
or<(x") satisfied. Introducingg=B/(Vy+k*), we find

Vo
1+ F . (8h)

P(X, ) =r(x) exp(—iwt+if(x)).
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B=-(V k%) B =
v\ s
E
B=(V0+kx\
) Vo
X2 0

FIG. 3. The amplitude of the trivial phase solutions of type A

FIG. 2. The region of validity of the solutions of type A is Versus the potential strengtt,.
displayed shaded for a fixed value lof The edges of these regions

correspond to various trivial phase solutions. and snk,k) are periodic inx with period &K (k), whereas
dn(x,k) is periodic with period K(k). These properties
VB(1+B)(1+k?B) (KK dx p matter greatly for the stability analysis, as will be seen
* J =—. (9 in Sec. Ill. Some solutions with trivial phase are shown in
w 0 Snz(X,k)-i-ﬂ q F|g 4.
This equation is solved foB, after whichB=B(Vy+k?). Another interesting limit occurs whek=0, resulting in

trigonometric solutions. These solutions are illustrated in
Fig. 5. Whenk=1, solutions are expressed in terms of hy-
perbolic functions. In this case the potential reduces to a
single well or peak and the solution is a solitary wave. For
values ofk close to 1, the potential is a train of well-
separated wells or peaks, and the solutions are trains of soli-
fary waves with exponentially small interactions. The soli-
tary wave limit is illustrated in Fig. 6.

For numerical simulations, the number of periods of the po
tential is set. This determineag limiting the number of so-
lutions of Eq.(9). Solutions with the same periodicity as the
potential requirgp/q=1.

Note that solutions of type A reduce to stationary solu-
tions of Egs.(1) and (2) with Vy=0. Furthermore, all sta-
tionary solutions of the integrable equation are obtained a
limits of solutions of type A.

By equatingc=0, solutions with trivial phase are ob-
tained and the above formulas simplify greatly. Sioéenas Type B
three factprs which are !inear.iB [see Eq.(7)], there are For these solutions2(x) is linear in cni,k) or dn(x,k).
threze choices o8B for th'Chz this occursB=0, B=—(Vo  First we discuss the solution with onk). The quantities
+k%), andB=—(Vo+k7)/k". These possibilities are three assqciated with this solution will be denoted with a subindex

of the four boundary lines of the region of validity in Fig. 2. 1 The quantities associated with the &) solution re-
Note that the remaining boundary lin&/{=—k?) corre- ceive a subindex 2.

sponds tar?(x) =B, which gives rise to a plane wave solu- Substituting
tion. Using Jacobian elliptic function identitigR4], one
finds various simplified solution form&=0 gives ri(x)=alcn(x,k)+b1, (13

2

F(X)= WSF(X K), o= 1+k (10) in Eq. (5) and equating different powers of cgk) gives the

2 - relations:
— 2 ;
B=—(Votk’) gives Vo PE)=(V,+K) sn’(x k)
0 ZRES ' IS
r(x)=v—(Vot+k>enx,k), w=3-Vy—k? (11 e
J/ \ / \
where cnk,k) denotes the Jacobian elliptic cosine function. 0 L N .
Lastly, B=— (Vo+k?)/k? gives
V(x)
NS Vo K2 v '
r(x):(TO)dn(x,k), w:_l_k_§+?’ —(1+Vo/k2)° 0 \ /ZK(k)\\ 4K(k)
(12) 2, e 2 \\""/
FE)=—(14Vk’) dn’(x,k)
where dnk,k) denotes the third Jacobian elliptic function. | r2(")=‘(Vo"¢k2) en’(xk) Ve v
Solution (10) is valid for Vo= —k?, whereas the other two ~(Vy#K) >/\<>/\('X/)< 0
solutions(11) and (12) are valid forVo=<—k?. The ampli- 0 S~ T AN
tude of these solutions as a function of potential streNgth 0 2l)<((k) 4K(K)

is shown in Fig. 3.

Both CUQ(_,k) and sng,k) have zero average as functions  FIG. 4. Trivial phase solutions fok=0.5. V(x) is indicated
of x and lie in[—1,1]. On the other hand, dr(k) has non-  with a solid line. For the top figur®,=1. For the bottom figure
zero average. Its range [is/1—k?,1]. Furthermore, cn{k) Vo=—-1.

036612-3



BRONSKI, CARR, DECONINCK, KUTZ, AND PROMISLOW PHYSICAL REVIEW B3 036612

(@) V=1, B=1 (b) V=—1, B=0.1 (@) V,=1, B=1 (b) V,=1, B=0.1
/,/“\\\ l,’)’_‘\\\ 1F /"’ \\\ // :_\_‘_,‘/ """"" ~ Pl
1 - ™ - I/I \‘\ / \\\ 1 .S
/,,/ . o \ \\,’, .
0 — 0 { ot o 1
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o | ot o n 5 -5 0 5
(0) Vy=—1, B=3 (d) V,=—1, B=1.1 (e V=1, B=2, k=1-10
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FIG. 5. Phase and amplitude of the trigopnometric solutions. Forl_ FldG' 6.t i\(;lutio_ni \Vyittkk:ﬁ_l (a)t’h(b)(’j (C)hoijkrl .(d)' The;?gd
all these figures, the solid line denot®x)= —V,siré(x), the ine denotesV(x) = —Votanir(x), the dashed line is(x) an €

L o dotted line is8(x)/27. For (a) and (b), r3(x)=(V,+1)tant(x)

dashed line iz (x) and the dotted line i®(x)/(27). Herer?(x) 0
—\/ i _ +B and 6(x)=+B/(Vy+1)x+arctan{/(Vy+1)/B tanhf)). For
Vosir?(x)+B and tan@(x))==*+1+V,/Btan(x). Note that (©), r(x)= e Vot 1)sechk) and 6(x)=0. In (d), a value ofk

6(x) becomes piecewise constant,Baapproaches the boundary of
(x) P bp YOl 1_10"1 was used.

the region of validity. Far away from this bounda#(x) is essen-
tially linear. Note that no phase quantization is required in this case.

r5(x)=a,dn(x,k) +b,, 17
Vo=— §k2, (143 in Eq. (5). Equating different powers of dr(k) imposes the
8 following constraints on the parameters:
1 6a’ Vo=— 3K, (189
w1=§(l+k2)+ —, (14b
K w,=3(1+k?)+6a2, (18b)
as a2

ci= (16l -k (16T +K*-kY, (149 c5= (16a5—1)(16a5+k*~ 1), (189
482 b,=4a3. (180
by=—-. (140 . . . .

k2 The class of potential§?) is restricted as for the previous

_ . _ _ solution by the first of these relations. The solution class
The class of potentials Eq2) is restricted by the first of again depends on one free amplitude paramejeand the
these relations so that, is in the narrow range-3k%/8  free equation parametér
<V,=0. The solution class now depends on one free ampli- The region of validity of this solution is once more deter-

tude parametea, and the free equation parameter mined by the requirememgz;o andr%(x)go:
The region of validity of this solution is, as before, deter-
mined by the requirements=0 andr2(x)=0: . J1—K?
la,|=7 or O=sa,< : (19
k2 4
lai|=—. (15 . . . .
4 The period ofr,(x) is equal to the period of the potential.

Requiring periodicity inx of this second solution of type B
The period ofr,(x) is twice the period of the potential. Re- gives
quiring periodicity inx of this first solution of type B gives

V(BI—K3)(B3+1—K?) [2K(K) d + ‘/(16""%_1)(16""%"2_1)]““) dx  p

-+ 1 1 - —X:E - rs 4a +dr(X,k)_a

B am jo 4By+kenxk) g’ CT (20)
(16)

For givenk and integersp, g, this equation needs to be

For givenk and integer®, g, this equation is solved fg8,, solved to determina,.
from which a;= B,k/4. In contrast to solutions of type A, solutions of type B do
The dn,k) solutions are found by substituting not have a nontrivial trigonometric limit. In fact, for solu-
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1 I I -~ N N
-5 -25 0 25 5 0 kZ \\ . N
X 0 2K(k) 4K(K)
FIG. 7. Amplitude and phase of solitary wave solutions of type ™ @ e 7
B. The potentialV(x) =3 tanh§)%8 is indicated with a solid line. 05 | /:‘_:—mu--:'\"’\ ) e @
Here r3(x)=4a%+asechk) and 6(x)==xy16a2—1/2 y N i\\
Farctan(/(4a—1)/(4a+1)tanh&/2)). The dashed line solution L/ ——_ 4 R \ 2 Xl
corresponds ta= 0.3, the dotted line ta=—0.3. 0 —— x0 4K(K)

tions of type B, this limit is identical to the limit in which the . . )
yp FIG. 8. Solutions of type B with trivial phase. The figures cor-

potential strengthv 3k</8 approaches zero. Thus it is respond to, from top to bottork—0.5, k—0.9, andk—0.999. The

i(:r:?:grrgk])?(ta trr:snﬁgleu;rogsc]'of tég? quS;\i/c?nn?—|g\?vzl\(/jgrueotlfqetrh?men?al is indicaéted with a solid line. The otTer lerves €re
. - - o . S ’ r1(x)| with a,=k/4, (2) r,(x) with a,=1/4, (3) |r,(x)| with a,
interesting limits do exist: solitary wave solutions are found_ Z1/4, and(@) r,(x) with a,= VI—K2/A.

for k=1. They are illustrated in Fig. 7.

Trivial phase solutions correspondsde-0. This 0ccurs .41 ang numerical results are presented for the solutions with
precisely at the boundaries of the regions of validity. For theyjyia| phase. In contrast, only numerical results are presented
first solution of type B, there are two possibilitiess  tor the nontrivial phase cases
_ 1,2 _ L2 : X . . ) . .
=k®/4 ora,;=—k*/4. By replacingx by x+2K(k), one sees We first consider the linear stability of the solutit8). To
that these two possibilities are completely equivalent, so only so, consider perturbations of the exact solutions of the

the first one needs to be considered: form
k2 k2 _ ;
ri(x)zz(lﬂn(x,k))' w1:%+? 21) Pp(x,0)=(r(x) + ed(x,1))exdi(6(x) —wt)], (29

wheree<1 is a small parameter. Collecting terms@¢e)
For the second solution, there are four possibilities: gives the linearized equation. In terms of the real and imagi-
=1/4, a,= —1/4, a,=0, anda,= \1—k?4. The third one nary partsU=(U;,U,)!=(Rd ¢],Im[¢])' the linearized
of these results in a zero solution. The others give interestingvolution is given by
trivial phase solutions. Faa,=1/4,

L, -S
K2 Ui=JLU=] U, (26)

300 = A+ k), wy—s (22 s L

E + §
where
The casea,= —1/4 gives

1 c?
1 2 __ = 2 2 _
B0=1A-dnxk), w=ytg. (23 . 2((& | OV e (2T
: _ 2
Finally, for a,= 1—k?%/4, L=—%(a§— :Z) R0V —w, (27
N 1- K2 rx
r3(x) = —7—(dn(x,k)+V1-K), wy=——. (24 e 1

S= <Okt (279
These solutions are shown in Fig. 8. r(x) r(x)
andJ=(_%}) is a skew-symmetric matrix. The operatdrs

L., andL_ are Hermitian whileS is anti-Hermitian. Con-

We have found a large number of new solutions to thesidering solutions of the forr(x,t) = U(x)exp(t) gives the
governing Egs(1) and(2). However, only solutions that are eigenvalue problem
stable can be observed in experiments. In this section, we
consider the stability of the different solutions. Both analyti- LU=2\U, (28

lIl. STABILITY
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where£=JL and\ is complex. If allx are imaginary, then L Im(})

linear stability is established. In contrast, if there is at least -

one eigenvalue with a positive real part, then instability re-

sults. Using the phase invariange~>e'”y of Eq. (1), Noet- dn(x.k) en(x,k) sn(x,k)
her's theoreni30] gives ' '

-172 =D 0 ¥r Re(})

0
C(r X)>=o, (29
( FIG. 9. The spectrum df _ for the type A cnk,k) trivial phase
which implies that. _r(x)=0. ThusA=0 is in the spectrum solution.
of L_ . For general solutions of the for(8), determining the
spectrum of the associated linearized eigenvalue problenhhe analytical results are accompanied by direct computa-
(26) is beyond the scope of current methods. However, soméons on the nonlinear governing Egd) and (2). For all
cases of trivial phase solutions£0) are amenable to Computational simulations, 12 spatial periods are used. How-
analysis. ever, to better illustrate the dynamics, typically four spatial
The Hermitian operators.. are periodic Schidinger op-  periods are plotted. Moreover, all computations are per-
erators and thus the spectra of these operators is real affeffmed with white noise included in the initial data.
consists of bands of continuous spectrum contained in
[N ,») [30]. Here\ . denote the ground state eigenvalues A. Trivial phase: Type A
of L., respectively. They are given by 1. en(x.k)

N =infg—1(olL|d), (30) For the cnk,k) solution thel . operators are

where| ¢||?={(¢|#). From the relatior. , =L _+2r?(x) it
follows thath , >\ _. Also A _<0 sincer=0 is an eigen-
value ofL_ .

If A\, >0, thenL , is positive, so we can define the posi-

: 1/2 :
tive square rootL7*, via the spectral theorerf80], and i Vo< —k2. Note thatL _, which is independent of,, is

", 12 1/2 c
hence the Hermitian operatdd=L-"L_LZ“ can be con-  the classical 1-gap Lameperato29]. The spectrum of. _
structed. The eigenvalue problem f6rin Eq. (28) is then  can pe calculated explicitly. The ground state eigenvalue is
equivalent to A_=(k?—1)/2 with associated eigenfunction dnk). The
(H+\2)o=0, (31) elliptic functions cnk,k) and snk,k) are also eigenfunc-
tions of L_ . They are the first and second excited state and
with ¢=LY20,. Denote the left-most point of the spectrum heve eigenvalue 0 arif/2, respectively. These are the only
of H by uo. If £o=0 then\2<0 and the eigenvalues ¢f ~ €igenvalues and the spectrum consists of the bakis
are imaginary and linear stability results. Sindd  —1)/2,0]U[k%/2.2). The spectrum is illustrated in Fig. 9.
=LY Y2 andL¥?is positive,uy=0 if and only ifL _ is Since dnk,k)>0 andi _=(k“~1)/2<0 the arguments
non-negative. In contrast, ji,<0 then\?>0 and. has at of the preceding section imply that the_xr,i() wave is un-
least one pair of real eigenvalues with opposite sign. Thi§table whenever the_.operatbr+>0.zlt is clear fr(z)m Eq.
shows the existence of a growing mode leading to instabilit328 that L, is positive if Vo<—(k°+1/4) andk*>1/2.
of the solution. Thus, the cnX,k) wave is unstable for parameter values in
Three distinct cases are possible for linear stability. ~ this region. Moreover, this region can be enlarged/fs<
) ] —(k?+1)/2 andk®>1/2 by observing that the ground state
(i) If r(x)>0 thenr(x) is the ground state df _ [30], and  gjgenvalue of an operattp+ yL, is a convex function of :
Eqg. (29 impliesk - =0 and hence. . >0. Thus the solution )\ =A(4). This follows from the fact that the ground state

(3) is linearly stable. eigenvalue is the minimizer of the Rayleigh quotient. Let
(ii) If r(x) has a zero, it is no longer the ground ste88] 4 <[0,1], then

and A\ _<0. Thus there exists @, such that(iy|L _| o)
<0. If in addition x>0, then we can construct  A(ay;+(1—a)vy,)
=L M2y /ILT M2y which gives(¢|H|$)<0. Hence

L.=—3d5—(2Vo+3kDerf(x k) +k*~3, (32

L_=—}2—KZerd(x,k) + k2— 1, (32b)

1o<0 and. has positive, real eigenvalues so that the solu- =infjy-1(dla(lot yily) +(1-a) (Lot y2L 1) 4)
tion (3) is linearly unstable. = ainf|y—1( d|Lo+ y1L1| &
(iii) For A _ and\ ;. both negative the situation is indefinite Il l<_ Lot vl @)
and our methods are insufficient to determine linear stability +(1—a)infjy=1(d|Lot y2L 1| b)
or instability.
Y = aA(y1)+(1-a)A(y). (33

In what follows, these results are applied to the types A and

B trivial phase solutions constructed in the preceding sectiorlNow consider the ground state eigenvalue=A . (V) and
Specifically, we construct the operatdrs andL , for each  note thatA . (— k?)=(k?—1)/2 andA , (—3k?/2)=k?>—1/2.
solution, which allows us to use one of the above criteriaThe line through these two points is given by, (V)
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100

-1 0 1 wave number

FIG. 11. Wave number spectrum evolution of a type Axgkj
solution given by Eq(11) over 100 time units withk=0.5 and
Vo=—0.55. The modal evolution shows the band of unstable
modes which result from starting with the unstable>gk} solu-
tion. This shows that the instability occurs in a neighborhood of the

FIG. 10. Unstable evolution of a type A cnk) solution given  dominant wave number of the stationary solution.
by Eqg.(11) over 40 time units wittk=0.5 andV,= —1.0.

2. sn(x,k)

=—Vo—(1+K?/2, so by convexity A4 (Vo)=—Vo—(1 For the snk,k) solutions thel . operators are given by
+k?)/2 for Voe[—3k?/2,—k?]. Thus, A, =A(Vy)=0 if
Vo=—(1+k?)/2. 1 14 K2

If k?<1/2, less is known. However the results of Wein- L. =— = dyet (8k2+2V)srE(x, k) — , (353
stein and Kellef31] show that the ground state eigenvalue 2 2
grows as A, ~(2(1—k?)|Vo))Y?+k?—1/2 for —Vy>1.
Hence fork?< 1/2 instability occurs for sufficiently negative 1 ) 1+k?
V. L_=—5dutk Sre(x,k) — 5 (35b

The most unstable modes of the xrK) solution can be
determined perturbatively whea=—2(Vo+k?)<1. This
corresponds to a solution with small amplitude. Sithce
=L_+e cré(x,k), it follows thatL . is not necessarily posi-
tive, disallowing the construction ¢ in Eq. (31). However,

Again L_ is a 1-gap Lameperator, differing fromL _ for
the cnk,k) solution only by a constant. The spectrum is
given by [ —k?/2,—1/2]U[02). It again follows from the
work of Weinstein and Kellef31] that for sufficiently large

S :
from Eq.(28), L. L_Up=—\"U;, which offers an alterna- 51yes ofV, the ground state eigenvalue bf. is approxi-
tive to Eq.(31) to calculate the spectrum of E(8). Let A mately given by

=iv+eA, and Uz=¢v+s¢1, wherewv is an eigenvalue of
L_ and¢, is its associated normalized eigenfunction. Then a 1+ K2
first order calculation using time-independent perturbation N =~(2Vy)Y?— 5

theory gives

(36)

and thusL, is positive definite for sufficiently larg&/.
No=—v2—e (/e (X,K)|b,). (34 This, in turn, implies instability of the sm(k) solution for
sufficiently largeVq, which corresponds to large amplitude
solutions. The sn(,k) solution goes quickly unstable in a

2 o
Thus, A°>0 only if —e(g,|cr(x,K)|$,)<v<0. Hence, similar fashion to the cn(k) solution(see Fig. 1D

only modes¢, with v in this band near zero are unstable.
For these unstable modes, the eigenfunctignis approxi- 3. dn(x.k)
mately the zero mode cr(k). Thus the onset of instability ' '
in the Fourier domain occurs near the wave numbers of the From the previously established results, linear stability for
cn(x,k) solution. This is characteristic of a modulational in- the dn,k) solutions follows immediately since(x)>0,
stability. because dn(,k) has no zeros. Thus in contrast to the
To illustrate this instability, we display in Fig. 10 the cn(x,k) and sng,k) solutions, the dn{,k) solutions given
evolution of a cnk,k) solution over the time intervat by Eq.(12) are linearly stable. Figure 12 displays the evolu-
€[0,40] for Vo=—1.0 and k=0.5. The solution goes tion of a dnf,k) solution over the time intervale[0,80]
quickly unstable with the instability generated near the firstfor Vo= —1.0 andk=0.5. Although noise was added to the
wave number. This agrees with the analytical prediction. It isnitial data, the solution shape persists and the solution is
illustrated in the evolution of the wave number spectrum instable, as predicted analytically. For this case, the wave num-
Fig. 11. Here a close-up of the spectrum near wave numbdyer spectrum is supported primarily by three modes: the zero
one is shown. This shows that the instability indeed occurs imode which determines the offset, and two other modes
a neighborhood of the dominant wave number of the stationwhich determine the oscillation frequency of the xiik) so-
ary solution. lution. Even with large perturbations, this solution persists.

036612-7



BRONSKI, CARR, DECONINCK, KUTZ, AND PROMISLOW PHYSICAL REVIEW B3 036612

vi*
y I LIS
| [ ...
o AT —
' ~ 80
t

—-13.5 0

FIG. 12. Stable evolution of the type A dnk) solutions given
by Eqg.(12) over 80 time units wittk=0.5 andV,= —1.0.

This indicates that the offset of a solution is important for its
stability. This observation is reconfirmed for other stable so-
lutions below.

B. Trivial phase: Type B
1. cn(x,k)
The type B trivial phase solution is obtained for
a;=*k*4 and corresponding amplitude |r(x)]
= (k/2)\J1+cn(x,k). The solutionr(x) is not strictly posi-
tive. The operatot_, is

1 2 k> 1 3 FIG. 13. Unstable evolution of the type B onk) solutions
Ly=- Sht g~ 8 + §k25r?(x’k)+3alcn(x’k)' (37) given by Eq.(21) for k=0.5 (top panel g\ﬂd k=0.5299 (bottom
pane) for a;=k?/4 andV,= —3k°%/8.

Thus we find that the situation is indeterminate.

Numerical simulations for the type B cqk) solutions 1, K1 , 3Kk2
given by Eq.(21) are illustrated in Fig. 13. This figure dis- L_=-— 5‘9"_ 8 —2a5+ ?Snz(x,k)vLazdn(x,k).
plays the evolution of the cr(k) branch of solution fork (38b)
=0.5 (top panel andk=0.999(bottom panelover the time
interval te[0,800] and te[0,400, respectively, forV, . .
= —3k%/8. For bothk=0.5 andk=0.999 the solutions are The casea,=1/4 givesL_r(x)=0 with r(x)>0. Hence
unstable, but this instability manifests itself only after severaffom the linear stability criteria, these waves are stable for all
hundred time units. Figure 14 shows the evolution of thevalues ofk. As with thea,=1/4 case, the regime wheee
wave number spectrum for both these cases k0.5, the = V1—Kk/4 gives a solutiorr (x) which is strictly positive
onset of instability occurs near wave number one as is th@nd is the ground state &f . Thus stability follows for all
case of type A solutions. After 800 time units, the wavevalues of k. The last parameter regime, for which,
numbers have only just begun to spread, causing the solution
to destabilize. Fok=0.999, the solution is composed of a 800 400 ,

much larger number of wave numbers which destabilize t 1 b
much more quickly than thie=0.5 case. Here the instability !
is generated near wave number one and its harmonics. 400 200
2. dn(x,k)
The trivial phase dn(,k) solution requirex=0 which is 0 0
achieved form,= *1/4, a,=0, ora,= V1 —k%4. Thus three 80 0 mode 80 -80 0 mode 80

distinct parameter regimes need to be considered. The rel-

. . FIG. 14. Wave number spectrum evolution of a type Bxck
evant operators in this case are P ype Bxck]

solution given by Eq(11) for a;=k?/4 and corresponding t&
=0.5 (left pane) andk=0.999(right pane) of Fig 13. The evolu-

2 2
L,=— Eﬁi_ k“+1 +6a§+ ﬁsnz(x,k) +3a,dn(x,k), tion shows that the unstable band of modes is generated r_1ear wave
2 8 8 number one and fok=0.999 near wave number one and its har-
(38a monics.
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FIG. 15. Stable evolution of a type B dnk) solution given by
Eq. (22 for k=0.999 anda,=1/4.

=—1/4, is indeterminate since both. and\ ;. are negative
and our linear stability analysis is inconclusive.

These analytic predictions are confirmed in Figs. 15 and
16. In Fig. 15 the evolution of a dr(k) solution is shown
for a,=1/4 andk=0.999. As predicted analytically, this pa-
rameter regime is stable for all values. This simulation
once again illustrates the importance of an offset for stabi-
lizing the condensate. In contrast to this stable evolu-

FIG. 17. Evolution of a nontrivial phase type A solution with
V,=1.0 andB=1 (top panel and B=1/2 (bottom panel For B
sufficiently large, the offset provided is able to stabilize the conden-
sate whereas fdB below a critical threshold the condensate desta-
bilizes as shown foB=1/2.

tion, the casea,= —1/4 is unstable as illustrated in Fig. 16.
The linear stability results in this case are indeterminate.
However, the numerical simulations conclusively show the
evolution to be unstable for ak values. For this case, the
offset of the solution is insufficient to stabilize the conden-
sate. We note that for small values lofthe onset of insta-
bility occurs after a very long time. Higher valueslofesult

in instabilities on a much faster time scale. Finally, we con-
sider the parameter regime for whieh=\1—k?%/4. In this
case, the analytic predictions once again suggest stability for
all k values. We do not illustrate this case since it is qualita-
tively very similar to Fig. 16. However, in contrast to the
a,=1/4 case, for values df close to one, there is a negli-
gible amount of offset, distinguishing this stable case from
previous ones. For these valueskpthe solution has a small
amplitude compared to the potential so that the behavior is
essentially linear and stability is achieved because the con-
densate is trapped in the wells of the potential, as in ordinary
0 0 guantum mechanics.

FIG. 16. Unstable evolution of a type B dnk) solution given
by Eq. (23) for k=0.5 (top panel and k=0.999 (bottom panel
given a,= —1/4. In this case, there is no offset to stabilize the As stated at the beginning of Sec. Ill, determining the
condensate. linear stability for nontrivial phase solutions is not amenable

C. Nontrivial phase
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to analysis. This leads us to consider the stability of nontrapped, quasi-one-dimensional Bose—Einstein condensate.
trivial phase solutions using numerical computations. Two new families of periodic solutions of this equation were
To begin, consider the trigonometric limit of the non- found and their stability was investigated both analytically
trivial phase solutions of type A. These solutions are showrand numerically. Using analytical results for trivial phase
in Fig. 5. Figure 17 depicts the evolution of a pair of initial solutions, we showed that solutions with sufficient offset are
conditions withVy= 1.0 and for whictB=1 (top panel and linearly stable. Moreover, all such stable solutions are defor-
B=1/2 (bottom panél SinceB determines the offset of the mations of the ground state of the linear Sctinger equa-
condensate, these numerical results show directly the impotion. This is confirmed with extensive numerical simulations
tance of this offset for stability. In contrast, if the offset is too on the governing nonlinear equation. Likewise, nontrivial
small, it is unable to stabilize the condensate. phase solutions are stable if their density is sufficiently off-
For type B solutions, qualitatively nothing changes fromset. Since we are modeling a Bose—Einstein condensate
the dynamics illustrated for the trivial phase case. In particutrapped in a standing light wave, our results imply that a
lar, numerical simulations can be performed using exact sdarge number of condensed atoms is sufficient to form a
lutions which are constructed subject to the phase quantizatable, periodic condensate. Physically, this implies stability
tion condition given by either Eq16) or (20). A numerical  of states near the Thomas—Fermi limit.
shooting method is used to find appropriate valuea.ofor To quantify this phenomena, we consider k0 limit
which a phase—quantized, periodic solution exists. Once thiand note that in the trigonometric limit—0 the number of
is achieved, numerical simulations can easily be performedparticles per welln is given by n=(f§|#(x,t)|?dx)/7
Note that any integer valup is allowed as input for the =Vy/2+B. In the context of the BEC, and for a fixed atomic
phase quantization conditions, provided solutions exist focoupling strength, this means a large number of condensed
the parameter values. It turns out this imposes a lower boungtoms per welln is sufficient to provide an offset on the
on the value ofp. In the simulations, the actual value pf  order of the potential strength. This ensures stabilization of
does not affect the stability of the solution. Increasing thethe condensate. Alternatively, a condensate with a large
phase—quantization integgr leads to a solution with a enough number of atoms can be interpreted as a developed
steeper phase profile, suggesting a more unstable situatiogondensate for which the nonlinearity acts as a stabilizing
However, this phase effect is balanced by an increased offs@techanism.
a, of the amplitude. Qualitatively, the dynamics are as de-

picted in Figs. 15 and 16. Thus the nontrivial phase solutions ACKNOWLEDGMENTS

of type B are stable for,>1/4 and for G<a,< 1—k?/4, i ) ) ) .
whereas the nontrivial phase solution is unstable &g« We benefited greatly from discussions with Ricardo
—1/4. Carretero-Gondaz and William Reinhardt. The work of J.

Bronski, L. D. Carr, B. Deconinck, and J. N. Kutz was sup-
ported by National Science Foundation Grant Nos. DMS-
9972869, CHE97-32919, DMS-0071568, and DMS-

We considered the repulsive nonlinear Schinger equa- 9802920, respectively. K. Promislow acknowledges support
tion with an elliptic function potential as a model for a from NSERC-611255.

IV. SUMMARY AND CONCLUSIONS

[1] W. Ketterle, D.S. Sturfee, and D.M. Stamper-Kurn, Rno- [14] D.S. Petrov, M. Holzmann, and G.V. Shylapnikov, Phys. Rev.
ceedings of the International School of Physics “Enrico Lett. 84, 2551(2000.
Fermi” (I0S, Amsterdam, Washington, D.C., 1999p. 67—  [15] D.S. Petrov, G.V. Shlyapnikov, and J.T.M. Walraven, Phys.

176. Rev. Lett.85, 3745(2000.

[2] F. Dalfovo, S. Giorgini, L.P. Pitaevskii, and S. Stringari, Rev. [16] L.D. Carr, C.W. Clark, and W.P. Reinhardt, Phys. Rev62\
Mod. Phys.71, 463(1999. 063610(2000.

[3] K. Huang, Statistical Mechanic$Wiley, New York, 1963. [17] L.D. Carr, M.A. Leung, and W.P. Reinhardt, J. Phys3B

[4] B.P. Anderson and M.A. Kasevich, Scier2@2 1686(1998. 3983(2000.

[5] E.W. Hagleyet al., Science283 1706(1999. [18] K. Bongset al,, e-print cond-mat/0007381.

[6] M.L. Chiofalo and M.P. Tosi, Phys. Lett. 268 406 (2000. [19] M. Key et al, Phys. Rev. Lett84, 1371(2000.

[7] Y.B. Ovchinnikovet al, Phys. Rev. Lett83, 284 (1999. [20] N.H. Dekkeret al, Phys. Rev. Lett84, 1124(2000.

[8] D. Jakschet al,, Phys. Rev. Lett81, 3108(1998. [21] M.R. Andrewset al.,, Science273, 84 (1996.

[9] G.K. Brennen, C.M. Caves, P.S. Jessen, and |.H. DeutscH22] J.D. Close and W. Zhang, J. Opt. B: Quantum Semiclassical
Phys. Rev. Lett82, 1060(1999. Opt. 1, 420(1999.

[10] D.-l. Choi and Q. Niu, Phys. Rev. Lei®2, 2022(1999. [23] M.R. Matthewset al, Phys. Rev. Lett83, 2498(1999.

[11] G. Baym,Lectures in Quantum Mechani¢dddison-Wesley, [24] Handbook of Mathematical Functionsedited by M.
Redwood City, CA, 1990 Chap. 20. Abramowitz and I. A. SteguiiNational Bureau of Standards,

[12] L.P. Pitaevskii, Sov. Phys. JETE3, 451 (1961). Washington, D. C., 1964

[13] E.P. Gross, Nuovo Ciment20, 454 (1961). [25] S. Theodorakis and E. Leontidis, J. Phys3@, 4835(1997.

036612-10



STABILITY OF REPULSIVE BOSE-EINSTEIN . .. PHYSICAL REVIEW B3 036612

[26] F. Barra, P. Gaspard, and S. Rica, Phys. Rew61E 5852 Enol'skii, A. R. Its, and V. B. MatveeySpringer-Verlag, Ber-
(2000. lin, 1994).

[27] K. Berg-Ssenson and K. Mimer, Phys. Rev. A58, 1480  [30] R. Courant and D. Hilbertiethods of Mathematical Physics
(1998. (Wiley, New York, 1989.

[28] M.J. Steel and W. Zhang, e-print cond-mat/9810284. [31] M.I. Weinstein and J.B. Keller, SIAMSoc. Ind. Appl. Math.

[29] Algebro-Geometric Approach to Nonlinear Integrable Equa- J. Appl. Math.45, 200 (1985.

tions edited by E. D. Belokolos, A. I. Bobenko, V. Z.

036612-11



